Molecular dynamics study of 2rotaxanes: influence of solvation and cation on co-conformation.
نویسندگان
چکیده
The conformational preference of a [2]rotaxane system has been examined by molecular dynamics simulations. The rotaxane wheel consists of two bridged binding components: a cis-dibenzo-18-crown-6 ether and a 1,3-phenyldicarboxamide, and the penetrating axle consists of a central isophthaloyl unit with phenyltrityl capping groups. The influence of solvation on the co-conformation of the [2]rotaxane was evaluated by comparing the conformational flexibility in two solvents: chloroform and dimethyl sulfoxide. Attention was also paid to the effect of cation binding on the dynamical properties of the [2]rotaxane. The conformational stability of the [2]rotaxane was calculated using a MM/PB-SA strategy, and the occurrence of specific motions was examined by essential dynamics analysis. The changes in the co-conformational properties in the two solvents and upon cation binding are discussed in light of the available NMR data. The results indicate that in chloroform solution the [2]rotaxane system exists as a mixture of co-conformational states including some that have hydrogen bonds between axle C=O and wheel NH groups. Analysis of the simulations allow us to hypothesize that the [2]rotaxane's circumrotation motion can occur as the result of a dynamic process that combines a preliminary axle sliding step that breaks these hydrogen bonds and a conformational change in the ester group more distant from the wheel. In contrast, no hydrogen-bonded co-conformation was found in dimethyl sulfoxide, which appears to be due to the preferential formation of hydrogen bonds between the wheel NH groups with solvent molecules. Moreover, the axle experiences notable changes in anisotropic shielding, which would explain why the NMR signals are broadened in this solvent. Insertion of a sodium cation into the crown ether reduces co-conformational flexibility due to an interaction of the axle with the cation. Overall, the results reveal how both solvent and ionic atmosphere can influence the co-conformational preferences of rotaxanes.
منابع مشابه
Introducing critical residues in the human prion protein and its Asp 178 Asn mutant by molecular dynamics simulation
The molecular dynamics (MD) simulation method is used to assess structural details for humanprion protein (hereafter PrPN) and its Asp178 Asn mutant (hereafter PrPm) which causes fatalfamilial insomnia disease. The results reveal that the flexibility and instability increase in PrPmcould be related to specific amino acids exposed to the solvent. Solvation free energy of PrPm is 20kjmot1nni2 mor...
متن کاملGyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations
The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...
متن کاملMolecular simulations of carbon dioxide and water: cation solvation.
Proposed carbon dioxide sequestration scenarios in sedimentary reservoirs require investigation into the interactions between supercritical carbon dioxide, brines, and the mineral phases found in the basin and overlying caprock. Molecular simulations can help to understand the partitioning of metal cations between aqueous solutions and supercritical carbon dioxide where limited experimental dat...
متن کاملIterative Force-Field Calculation and Molecular Dynamics of Cyclooctanone
Body's iterative force-field computer program has been used to calculate strain energies in cyclooctanone (I). 348 MHZ 1H NMR spectra of (I) have been investigated over the temperature range of 25° to -160°C. Two conformation processes affect the 1H NMR spectrum of (I). Iterative force-field calculations on the conformations and conformational interconversion paths of ...
متن کاملStudy of Ionic Solvation and Determination of Solvation Numbers of Alkaline Earth Cations with HMPA in Nitromethane Using 1H NMR Technique
A proton NMR method for the drtermination of salvation numbers of alkaline earth cations with hexamethyl phosphoramide (HMPA) in nitromethane (NM) as diluents is described. The method is based on monitoring the resonance frequency of HMPA protons as a function of HMPA / metal ion molar ratio at constant metalion concentration. The average salvation number of cations, , at any HMPA / metal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of organic chemistry
دوره 68 12 شماره
صفحات -
تاریخ انتشار 2003